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TRANSIENT MOTION OF A LIQUID IN A FISSURED POROUS STRAT UM
SUBJECT TO PERIODIC PRESSURE VARIATION AT THE BOUNDARY
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To determine the physical parameters in a fissurcd porous stratum, it
is necessary to produce periodic pressure variations, This requirement
is met by adjusting the rate of flow of liquid into a out of the well, A
discussion is given concerning one-dimensional periodic motion of a
homogeneous liquid with reference to parameter determination,

1. MOTION IN A RECTILINEAR STRATUM WITH
HARMONIC VARIATION AT THE BOUNDARY

A rock of this type may [1] be represented as a
continuous medium consisting of a set of joints and a
set of blocks, between which there is exchange of
ligquid. The equations of conservation for the liquid in
the two sets are

20e) L diy (pVy) —q = 0,
(1.1)
9 {mep) :
5 T 4iv(pV¥s) +¢=0.

Here mj and m, are the porosities, V, and V, are
the flow speeds, p is the density of the liquid, t is
time, and q is the mass of liquid emerging into the
joints from the blocks in unit time per unit volume of
rock. The following expression has been given [1] for
q:

9= (m—p). (1.2)

Here « characterizes the rate of exchange {1], u is
viscosity, p; is the pressure of the ligquid in the joints,
and p, is the pressure in the blocks.

This expression may be put in a different form,
without explicit use of the pressure in the porous
blocks. Let the pressure in the joints be p; then the
relation of q to p is

!
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in which 8, represents the elasticity of theblock system
and p, is the initial pressure in the joints.

The integral term in (1. 3) has the meaning of the
pressure in the blocks consequent on the influx of
liquid. The differential form of (1. 3) is

dq a (4 dp
7,,——*‘7(@;‘1—*—97):0- (1.4)
Solution of (1.4) subject to g}; - , = 0 gives
‘o
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As in [1], we use expressions for V, and V, in the
form of D'Arcy's law and neglect the flow through the
blocks [i. e., neglect the second term in the second

equation of (1.1)], which gives us from (1.1) and (1. 2)
an equation describing the motion of a homogeneous
and slightly compressible liquid:
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Here k; is the permeability of the joint system;
Bi, Boi, and Bgp are the compressibility coefficients
of liquid, joints, and blocks; mg and my, are the
initial porosities of joints and blocks; and v is the
Laplace operator.
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Consider now the periodic motion in a stratum
0=x< o,

The initial pressure is p = py. The pressure at the
boundary x = 0 varies harmonically for t > 0, the
amplitude being pyy and the circular frequency wy:

P (0,8 — py = Do Sin Wt . (1.8)

The motion is described by (1.6). The motion of an
elastic fluid in an elastic ordinary porous rock subject
to (1, 8) has already been discussed [2].

We convert to the dimensionless variables

E=—= T
VuaTs ' N
(1.9)
_plz, ) —po v 2
P = Poo (70_ u),J)'

Equation (1. 6) interms of thesebecomes as follows
for one-dimensional motion in a plane:

aP a%P asp arp
o T bama T g <00 (110)
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Tp 8 B
(a=bc, b= To! C={T% 6=—2,
(1.10)
e 1 by k (cont'd)
Tn=——1—=7'ﬂ=?'k’=m)‘

Here 7, is the characteristic delay time of transient
effects in a jointed porous medium [1].

It is stated [1] that n ranges from a few cm? up to
1010 cm?, while for » & 104 cm?/sec thedelay 7y ranges
from a fraction of a second up to several days.

The initial and boundary conditions are put as fol-
lows:

ap (&. 0)

P 0= = P (o0, 1) =0,

(1.11)
P (0, vy = sin2nv .

We apply the Laplace transformation to (1.10) and
(1.11) to get for U(£, s) that

a0 s(1+as)
e V=0

U&= SP(E, v) e dv) . (1.12)

The boundary conditions of (1.11) become

U (O, S) = 2

ol U (o0, 5) =

(1.13)
The solution to (1.12) subject to (1.13) is

U (E; S) z -+ 45’!2 GXP [— EZ (8)]

(200 = (L2

Inversion of (1. 14) gives

(1. 14)
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X exp[-— EZ(s) + sr} ds (1.15)
The integrand of (1.15) in the s =y + iy plane has

two poles s = 4 27i and three branch points s; = 0,

8, - —b™!, 83 = ~a~!. The integral of (1.15) is calcu-

lated via the contour of Fig. 1. Cauchy's theorem

gives

PiE, 1) = sin(2m’— Atsin J‘,';—>exp (—— Ak cos—q’-) +
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dy =1+ 4n%ab, dy=2n(b—a). (1.17)
n d (cont'd)
d3 = m—g—‘m , 'lp = arc tog fla S

From (L.5) and (1. 16) we have for q(x,t) that

k.
q= gulll;?:M(g, ) (1.18)
in which
1 161‘ ,8)
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Hy(E, 7) = —2n (1 + 4% " sin (2nv + are otg 2nb —
— AsEsin?/3 ) exp (— A cos /o),
Hy(E, v) = 2n(1 4 472%) " sin (2nr — Ak sin Yo $)X

X exp (—A,¢ cost/ap—1/b), (1.19)
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Formulas (1.16)—(1. 19) solve the problem; (1. 16)
shows that the pressure propagates into the siratum
with a phase shift and an amplitude that decreases
inwards. The integrals in (1.16) vanish for t — =
(nearly steady state) and characterize the effects of the
initial conditions,

Consider now approximate formulas for the cases 75« Tyand 74>
>> Tg.

The case 7, T corresponds to low frequencies, w, <€ 2n/ 1, We
find for the integral terms in (1,16) and (1.18) [3] asymptotic formulas
for7> 1and §<€ V1. We retain the first terms in the expansions,
and (with b « 1) get a solution to (1.16) and (1,19) as

PG, v =sin2rr —EV mexp(—EY R+ 0.25n " 8174, (1.20)
M, 1) = —21ncos (2nt — EV 1) exp (— EVa) — 03750 2 g0,

Similarly, the solution for high frequencies (v, 3> 7,, 0y 3> 21/ 1,,
5> 1)and 1/6 > 1 becomes

P (£, v) = sin (217 — §A,) exp (— EA,) + 0.2577E7 7, (1.21)
M (E, 1) = — b lsin (20T — EA,) exp (— EA,) — 0.375m kv,

Here
= (207 [e — 1 + (1 -+ 4n2prey)] e,

= (2)" [1 — ¢ + (1 + 4n2p22)"e] ",

The solution of {1.20), in accordance with the general conclusion
of {1], coincides with the known solution for an ordinary porous
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medium with a pressure conducrivity %, because for 7, Tthe delay
has a negligible effect on the redistribution of the pressure.

Comparison of (1.20) and (1.21) shows that high-frequency oscilla-
tions die out with distance more rapidly than low-frequency ones;but
(1.21) shows that this decay in a jointed rock is less rapid thanthatin an
ordinary porous rock characterized by parameter ®;. The reason is that
virtually only the liquid in the joints is in motion if 7> T, and the
pressure transmission in the joint system is greater than that in the rock
as a whole

2. ONE-DIMENSIONAL AXIALLY-SYMMETRIC
PERIODIC FLOW FROM A BOREHOLE

Consider now the motion of a homogeneous liquid
in a horizontally unbounded jointed porous stratum of
thickness h penetrated by a vertical borehole of radius
Trp.

The initial pressure distribution p;(r), with r the
distance from the axis of the borehole, corresponds
to a steady-state flow rate Q,.

Fort » 0 the flow rate at the borehole varies
harmonically:

Q(ropt) = Qy 4 Qrsinegt. (2.1)

The block permeability is negligible, so the bound-
ary condition for (2.1) is

)

= Q¢+ Qsinwet.
ry
We convert to the dimensionless variables

r t p(r,t)—po(r}
[EE N 1= — p=4£1 "8
VTy ' To P

and write (1. 6) for this case to get P(£,t) as

%1; 5 “%%_b( é a?;zgr +azzgr> -
R ke (2.2)
Py PPED _pio, g
(g%)m — —sin2at, 2. 3)
"v/.‘”‘“:igi?;l)?’ S = V%"n

The Laplace transformation is again applied to
(2.2) and (2. 3). The transform

e~sTdt

U= {PE 0

satisfies
e
with the boundary conditions
Ve, =0, (L) . — . @.5)

The solution of (2. 4) subject to (2. 5), since K(')(z) =
—K,(z) (in which K, and K, are MacDonald functions),

17
is

21 Ko[LZ (s)]

2.
s? 4 4n? EoZ (s) K, [goZ(s)] (2.6)

U )=

Inversion gives
Yotiv 1 Ko [EZ (s) ]esrd-s
5_ s2 b 4n? Lol (8) Ky [LoZ (s)]

Yp—iv

2.7

. 1
P(Cvr)sl_l‘glo—?*

The contour of Fig. 1 is again used for (2. 7);
Cauchy's theorem gives

0" 4 __1
P, )= - {KO 4 1)exp[11/2n( T —1)]

Cown K1 (Lowy)

o (Gwe) exp [—iY/emt (4T +
Lows K1 (Gows)

’%+§®@n)w+

+ S (D(E,T,S)de
1/a

Here

exp (— s1)

O™ = G e

x 0182 ()] N1 [Gog (9)] — Ny [Le (9)] J11%08 ()]
I [Cog (9)] + Ni® [Log (9)]

3

)

w, = A, exp (l—‘;— wy, = Agexp (__ l%) ,

(6 (4 — a3\
g(c)'—“\ 1 —bs ) -

Here J;, J;, Ny, and N; are Bessel functions. The
integral terms in (2.8) may be discarded for 7 large,
so the steady-state pressure distribution is

p(r, 8= po(r) + Qip {Ko(Xl)expli(mot-—‘/zﬂ)l__

4rkih X10K1 (X10)

_ Ko(Xy)exp [—i (wof +-Y/sm)] }
XKy (X30)

X, =rw 0, Ty, X jg=row, T i=1.2. (2.9)
Now zK,(z) ~ 1 for z — 0, so p(r,t) for X,y and Xy
small becomes

P )= po(r) + g {Ko (X exp [ [t — 2] —

— K, (Xa)expL~ ot + 5 7 (2. 10)

For Xy and Xy we have

| Xio| <<roV2r(1+ 6) (xTo) " G=12. (2.11)

Here & may vary within wide limits, The case & =0 was considered
in [1], which corresponds to negligible porosity and joint compressibi-
lity, It is found [4] that B¢, may be as large as 10%8 cor We assume
0 = fey = 10%3c, and use the orders of 8 and fcy (B = e ~107 4—107%
em?/sec™hy, to get 0 =6 =100, Putting r, ® 10 cm, » ™ 10% cm?/sec,
and § = 100, we get from (2,11) that (2.10) applies with an error of
not more than 5% for T = 150 sec.
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3. PARAMETER DETERMINATION FROM PRESSURE
CURVES

The parameters can be deduced from periodic
perturbations, and the resulting pressure variations
can be recorded at the wall of the source borehole
(r = ry) and in a test borehole (r = R),
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Fig. 2

We use (2.10), which contains the combination
kih/pu, the parameter %;/r§ (or ny/R%),7, andd . These
parameters are deduced, while p, myy, ks, B3, and
B are found from laboratory measurements; these
with h and R give us ky, W, B1, M1, @, ry. These allow
us [1] to deduce the mean block size I. Consider
first the parameter determination from the pressure
at the wall of the source borehole.

We put r = 1y in (2. 10) and use the above estimates
to show that for the values appearing in the argument
of Ky we can put

K, (z) ~ — (In Yyz + 0.577...) 3.1)

for z small; from (2. 10) and (3. 1) we get the pressure
as

p (ro?) — po (ro) = 4 sin (0t ~ ), 3.2)
. 1,265, T \2T
A =gt v+ (m ST
(3.3)

1.26%:Tp \~
tgq)=\|><ln ro‘f’;’},")‘.

Then for 7, = 0 we get the expressions for A and
tan ¢ given in {2] for an ordinary porous medium.

s

Fig. 3

Figure 2 shows A° = (47kih/Q,u)A as a function of
Jo= roz/x,To, in which curves 1-6 correspond to
various values of band 6 [1) b=0.1, 6 = 0,01; 2)
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b=0.1, 6=1; 3)b=1, 6=0.01; 49 b=1,5=1;
5)b=10, 6§ =0.01; 6) b =10, 6 =1].

The broken line corresponds to b = 0 (ordinary
porous medium with parameters k, and ). For
given f and 6 there is a nonmonotonic variation of A
with b; for b small, A decreases to values less than
A,, but then A begins to increase with b and becomes
larger than A;. The difference A — A, for b large is
inversely related tod.

The observed curve may be compared with (2. 1)
to get A and ¢.

A point of interest is to determine whether joints
are present in an unknown stratum without determining
the parameters. From (3. 3) we readily get for an
ordinary porous medium

. Alsinqnl . ,1
- Azsinq)s -

for a pair of frequencies wy; and wys, for which the
corresponding amplitudes and phase shifts are A, ¢,
A,, and ¢,. Similarly, if the stratum is jointed

S = Ay sin Q1 1+ (21’!51)2 <

_ ke ]
A,sings - MO8 T o) [‘“c '8 Sabs(T—o)
_ g _m og g
(o= s b= s =g =)

We put n = Tyy/Ty; and consider the function

14 (2nb1)2c n? 4+ (2nb)? c]—l

S (n) = are tg Bt (1— 2] [arctg b (I—cn

S(n) = 1 for an ordinary porous medium.
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Fig. 4

Figure 3 shows S(n) for various b, with é = 0; curves
1, 2, and 3 correspond to b; of 0.1, 1, and 10. Curves
1-4 of Fig. 4 show S(n) for various b, with 6 = 0
[1)b;=0.1, 6 =0.01; 2) b; = 0.1, 6 = 1; 3) by = 10,
6=0.01; 4) by =10, 6 =1].

The curves show that 8 may differ substantially
from 1 for a jointed medium of smalld, so the S(n)
results for a borehole can indicate whether the rock
is jointed.

As regards parameter determination, measurement
of A and ¢ for wy, and wy, gives, from (3. 3) a system
of four transcendental equations for kih/u, w,/r?, 74,6,
which may be solved by some approximate method.

The determination of w,/ri, 7y, 6 is much simpli~
fied if k;h/u is known; this may befound by the method
of steady-state flow or from the asymptote of the
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pressure-recovery curve, If k;h/u is known, the A
and ¢ for wy and wyy give us from (1.17) and (3.3) a
system of two linear equations:

Ou’U — @g tg v 41 =0,
(3.4)
oo"U — Woa tgPyv -1 =0,

in the unknowns u = Ty%¢c, v = 73(1 —c), with

_ daksh

_ 4nkh
Vo= [

Aysingy, Py = o A;8in @,

Solution of (3.4) gives us 7,81,/ ri.

Consider now parameter determination from the
pressure in a separate borehole; we here put r = R in
(2. 10). R is usually fairly large, and

>1 (j=1,2).

’L w
Vuly
The asymptotic expression for Ki(z) for z large is

Ko(z) ~ V] 2z, (3.5)
Then (3.5) and (2. 10) give us that

p (R, t) — p, (R) = B sin (0t — ),

49
_ Qu (n VT \" RAy P
B = 50w ( 2RA, ) exp (— Var, 0 7)
_ RA, . 1 P
= Vol sin +?.

Then for wy; and wy; we get a system of-equations
for kih/u, %/R%, 79,6. To conclude we note that this
method demands a fairly sensitive system for record-
ing the pressure variation.
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